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APPROXIMATE ZEROS 
OF QUADRATICALLY CONVERGENT ALGORITHMS 

PENGYUAN CHEN 

ABSTRACT. Smale's condition for a point to be an approximate zero of a func- 
tion for Newton's method is extended to the general quadratically convergent 
iterative algorithm. It is shown in which way the bound in the condition is 
affected by the characteristics of the algorithm. This puts the original condition 
of Smale for Newton's method in a more general perspective. The results are 
also discussed in the light of numerical evidence. 

1. INTRODUCTION 

When an iterative zero-seeking algorithm has a local quadratic convergence 
property, the iteration, if it ever converges, will eventually display the so-called 
precision-doubling phenomenon at each step, i.e., the precision of approxima- 
tion is asymptotically doubled at each iteration. The traditional approach to 
the problem is largely based on asymptotic analysis, which often involves large 
unknown constants in the estimation and only provides a qualitative description 
of the convergence property. It is of practical use to have some kind of quantita- 
tive criterion for predicting the immediate appearance of such fast convergence. 
This kind of knowledge is also useful in the construction of more efficient algo- 
rithms and in the analysis of their efficiency (cf. [3, 4, 5, 6, 7, 9]). 

A point where fast convergence to a zero starts immediately under iteration 
is called an approximate zero. Several versions of this notion exist for the well- 
known Newton's method and its higher-order generalizations (cf. [4, 5, 6, 7, 
8]). The definition in [8], which is solely in terms of the convergence property 
and reflects the order of convergence, seems most appealing. In that paper, a 
point zo is called an approximate zero of f for Newton's method if the Newton 
sequence { Zk }, where Zk = Zk- f -f(Zk- 1)/ (Zk- 1) for k = 1, 2, ... , starting 
with zo satisfies the following fast convergence condition: 

2k_l 

1Zk+l -Zkl < I) Izl -zol, k=O, 1, 2. 

Under this definition, Smale [8] proved the following theorem that gives a 
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sufficient condition for a point to be an approximate zero based on estimates 
from data at that point. 

Theorem (Smale). There is a constant ao 0.130707 such that zo is an ap- 
proximate zero of f for Newton's method if yf(zo)If(zo)I/If`(zo)I < ao, where 

Yf (Z) = SUp fk!f (Z) k-i 

k>1)=~X' k!f'(z) 

This work was later extended by Curry [1] and Kim [3] to some higher-order 
iterative algorithms including Euler's method and Halley's method. Although 
their definitions of an approximate zero are not exactly the same as that of 
Smale [8], the conditions they obtained are essentially the same, except for a 
different constant ao. 

Our paper is in the same spirit as those works. We deal with the gen- 
eral Newton-like quadratically convergent iterative algorithms of the form z + 
M(f(z), f'(z)), which includes Newton's method as a special case. The mo- 
tivation for this work is twofold. First, since the conditions for a point to be 
an approximate zero, given in [8, 1, and 3], are basically the same (namely, 
yf(zo)If(zo)I/If`(zo)I < cao for a certain constant ao which varies among [8, 1, 
3]), regardless of what iterative algorithm is under investigation (Newton's, Eu- 
ler's, or Halley's), it is natural to ask to what extent this condition is universal, 
or in what form the condition would appear in a general setting. If the con- 
dition is indeed universal for a certain class of iterative algorithms, how does 
the constant ao in the condition vary from one algorithm to another? In this 
paper, a similar condition for a point to be an approximate zero is established 
for the class of quadratically convergent algorithms. Moreover, it is shown how 
the bound ao in the condition varies from one algorithm to another and what 
characteristic of the algorithm affects the bound. This puts the conditions found 
in [8, 1, and 3] for Newton's method in a more general perspective. Second, 
other iterative algorithms of this form may be used to improve the convergence 
behavior of Newton's method in the global sense. According to the Fatou-Julia 
theory, each attracting cycle or fixed point attracts at least one critical point 
under the iteration of a rational map z + M(f(z), f'(z)); the nonconvergent 
behavior is essentially due to the existence of attracting cycles other than the 
fixed points (i.e., the zeros). So it may be possible to perturb Newton's method 
appropriately so as to remove some of the attracting cycles. In this way, in the 
region where Newton's method fails to converge to zeros, one may alter it to 
some other methods to achieve convergence. For example, Newton's method 
when applied to the polynomial f(z) = 2Z3 - z + 1 has the attracting cycle 
{0, 1} on the real line. When using M(f, f') = -f/f' + f3/(f'(1 + 2f2)), 
the attracting cycle {0, 1} no longer exists. In fact, the whole real line is free 
of any attracting cycles. Therefore, to find a condition for a point to be an 
approximate zero for other quadratically convergent algorithms is important in 
its own right. 

2. NOTATIONS AND STATEMENTS OF THE RESULTS 

For a function M: C x (C \ {0}) -* C, consider iterative algorithms defined 
by 

If (z) = z + M(f (z), f'(z)) 
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for finding zeros of f, where f can be any analytic function in the complex 
plane C. (We will work in this setting; but everything should readily carry 
over to the case of the real line or more general setting of Banach spaces with 
appropriate definitions and interpretations.) The assumptions we make on M 
are the following: 

(a) M : C x (C \ {O}) C is analytic; 
(b) M(O, )1O; 

(c) M(1 0)(0, v) = --, where M(010)(u, v) =- ( ') 

Assumption (a) is reasonable; assumptions (b) and (c) are equivalent to the 
iteration If being locally quadratically convergent at simple zeros of f . New- 
ton's method is M(u, v) = -u/v, which clearly satisfies assumptions (a), (b), 
and (c). 

We adopt most of the terminologies and notations used in [8], except that 
the notion of an approximate zero is defined here in terms of the residual and 
in a somewhat stronger sense. 

Definition. We call zo an approximate zero of f with respect to the iteration If 
defined by M if there exist positive numbers ao, a1, a2, ... satisfying ao < 1 
and ak+1 < ak for all k > 0 such that 

If(zn+k)1 ?a 2IIf(zk)I, n >0, k >?, 

where zn = If (zo) for n > 0 . 

Remark. One of the advantages of our definition of an approximate zero is 
that it is forward-invariant, namely, if z0 is an approximate zero, then so 
is z1 = If(zo). The original definition in [8] lacks this property. Another 
advantage is that it captures the full strength of quadratic convergence. It is 
easy to see that if z0 is an approximate zero under our definition, then 

If(zn)I < a2n1If(zo), n > 0, 

which is the residual version of the original definition in [8] when ao = 1/2. It 
should be pointed out that the condition for a point to be an approximate zero 
found in [8] is still valid under our definition. 

Let 

Yf (z) = sup 
f(k) 
kZ) 

k-I 

k1k!f'(z) 

TM (U, V) SUP M(n1,n2)(U, V) nl12 

n +n2 1 I nl!n2! 

where M(ni,n2)(u, v) = dnfl+n2M(u, V)/jUnl,aVn2. 

Theorem 1. Let M satisfy the assumptions (a), (b), and (c). Assume that 

def 
KM - SUP IVITM(O, V) < 00; 

IvI#0 
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then there exists a number t1 (KM) depending on KM (in a way to be specified 
in the next section and pictured in Figure 2.1) such that if 

(yf(zo) + 1)If(zo)ITM(0, f'(zo)) < tl(KM), 

then zo is an approximate zero of f with respect to M, namely, there exist 
positive numbers ao, a,, a2, ... satisfying aO < 1 and ak+1 a for all k > 0 
such that If (zn+k)I < a2n-1 If(Zk)I for all n > 0 and k > 0, where zn = I (zo) . 

Let t* (KM) = tI (KM)/KM . The following is an immediate corollary to The- 
orem 1. 

Corollary 1. If 
f(zo)| < t* (KM). (yf(zo) + 1) (z) 

then zo is an approximate zero of f with respect to M. 

For Newton's method, it is easy to compute that rM(O, v) = 1/jvl. So 
KM = 1, consequently t* (1) = t1 (1) 0.142301. So we have the following. 

Corollary 2. For Newton's method, if 
(yf(o) 1)f(zo) 

(yff(zo)+ l) < t1(1) 0.142301, 

then zo is an approximate zero of f with respect to the Newton iteration. 

Note that the general condition in Theorem 1 essentially specializes in this 
case to the condition obtained in [8, 1, and 3] for Newton's method. 

The functions tl(KM) and t*(KM) are decreasing in KM, as pictured in 
Figure 2.1. This reveals how the bound in the condition for approximate zeros 
depends on the algorithm M; it depends on M through the number KM in a 
decreasing manner. 

As another example, consider the iteration defined by M(u, v) = -u/v + 

u2/v2. It can be checked that TM(O, v)-= /Vli. So KM = 4 1.3195 and 
t1 (ri) 0.120574. Hence, we have the following corollary. 
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Corollary 3. If 

(yf(zo) + 1) f(ZO) <t*I) 0.O91378, 

then zo is an approximate zero of f with respect to the iteration defined by 
M(u, v) = -u/v + U2/V2. 

Even though satisfied by Newton's method, the assumption that KM < 00 in 
Theorem 1 seems overly strong. Fortunately, it is by no means necessary. The 
following is an extension of Theorem 1 without that assumption. 

Theorem 2. Let M satisfy the assumptions (a), (b), and (c). There exists a 
function t2(r) (to be specified in ?4 and pictured in Figure 2.2) such that if 

(yf(zo) + 1)If(Zo)ITM(O, f (zo)) < t2 (If'(ZO)ITM(O, f'(Zo))) , 

then zo is an approximate zero of f with respect to M, namely, there exist 
positive numbers aO, a1, a2, ... satisfying aO < 1 and ak+1 < ak for all k > 0 
such that If (zn+k)I < a 2-1 If (zk)I for all n > 0 and k > 0, where zn = If (zo) - 

Let t* (r) = t2(r)/r; then the condition in Theorem 2 can be rephrased as 

(yf(zo) + 1) f(zo) < t (If'(Zo)ITM(0 f'(zo))). (yf(z) +1)f' (zo), 

Again notice how the information about the algorithm M enters the bound. 
The bound depends on the quantity If'(zo)ITM(0, f'(zo)) in a decreasing man- 
ner, as pictured in Figure 2.2. 

For Newton's method, If'(zo) ITM(O, f'(zo)) = 1 for all zo. So the bound 
given by Theorem 2 is tW(1) = t2(1) 0.090571. 

As an illustration for this case, consider the iteration defined by M(u, v) = 

-u/v + u2. It can be checked that 

TM(O, v) = max{ 1, l/lvl}. 

Suppose that we want to find an approximate zero of f(z) = z4 - Z- 1/100. It 
can be calculated that yf (1) = 2 and If'(1)ITM(O, f'(1)) = 3. So the bound is 
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t*(3) 0.0131. Note that (yf(i) + 1)If(1)I/If'(1)I = 0.01 < 0.0131, so Theo- 
rem 2 guarantees that zo = 1 is an approximate zero of f with respect to the 
M specified above. Incidentally, note that the exact zero is about 1.00331135. 
As another illustration, consider the function g(z) = zez + z - 1/30. It can 
be verified that yg(O) = 1/2 and Ig'(0)ITM(O, g'(0)) = 2. So the bound is 
t*(2) 0.0273788. Since (yg(O) + l)Ig(0)I/1g'(0)I = 0.025 < 0.0273788, by 
Theorem 2, zo = 0 is an approximate zero of g with respect to the given M. 
Again note that the exact zero of g is about 0.0165289. 

3. PROOF OF THEOREM 1 

Let z+ denote If(z) and Mz denote M(f(z), f'(z)); then z+ = z + Mz. 

Lemma 3.1. If IUITM(O, v) < 1, then 

u M(2 0)(0, v) 2 M(k ?)(0, v) k 
(a) M(u,v)=--+- u +.+u+*; 

v 2! k 
(b) IM(u, v)I? < IUI-M(0 v) 

I1-IUITM(0, V) 

Proof. (a) This is Taylor expansion of M(u, v) in u at u = 0. The radius of 
convergence is at least l/rM(O, v) since IM(k, ?) (0 , v) /k! < TM(O, V)k, k > 
0. 

(b) is an immediate consequence of (a). El 

Lemma 3.2. If If(z)ITM(O, f'(z)) < 1, then 
M(f(z),f'(z)) f f(z) M(k, 0) (0,fI (Z)) k 

(a) M(fz) f'(f)) '(z) + k! (f(Z)) 
k=2 

(b) IAM(f(z), f'(z))I I 1 If(z)IrM (O, f' (Z)) 

Proof. This follows from Lemma 3.1 with u = f(z), v = f'(z). El 

Lemma 3.3. If (yf(z) + I)If(z)ITM(0, f'(z)) < 1, then 

f(Z+) < (yf(Z) + 1)If(Z)IIf (Z)ITM(0, f'(Z))2 
f(z) I 1 - (yf(z) + ')If(z)ITM(0, f' (z)) 

Proof. By Lemma 3.2(b), (yf(z) + 1)If(z)ITM(0, f'(z)) < 1 implies that 
IMzIyf(z) < 1. So the Taylor series 

Z0 f(k)(ZMz) 
f(z+) 

= f(z + M z) ( 
k! 

k 

k=O 

is convergent, since If(k) (z)I/k! < If'(z)I(yf (Z))k-l Then 

f(z) (+ f(Z) Z) + (z) E k!Zft(z)MZ 

Now by Lemma 3.2(a), 
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Pz)~~ ' (z) f (z,) 00 f M(k,(0 f,Z 
1 (z) ?z) <= f (z) TZ) + t k? _f (Z) k 

2 k( f'(zj 

1+~~~ f|z Ai f'(z) |I()TMU0f(z) 

fz| f(z) |f 1 f(Z(z)fk) 

If Z)E (ZMzI |f(Z) ky( |z 

k=2 

'"| Y(z)| 12 f'(z) t [ |()| O z) 
ff y(zlMl (Z 1_ f(z) Z f()TM(O, fI(z))kl(z] 

I f' f) Y(z) f'(Z ) 'IOf (z)kM(O, f'(Z) ) 1 
f(z) I f1 - Iff(z) klM(O,f(z)) 

fo(z) abbk!fiatn (z)M 
, f'(z), fz MO 'z)a ,f,y,T e 

f() k=2 

- f'(z) f(Z)IM fI f(Z) 2'()1-I(OM O,'z) 

f(Z) 1 -([ + (Z)ITM(kf (z)) I t f | fl( f(ZZIf2zM (Offl'() ) 

- f'(z) yf(zIf(z)I f(z))2 1)Az|T 

ByLemma 3.2.(b),I Mlfz ,te 
f(z) 1 - (f(z) + )If (z)ITM(O , f'(z))1 fz ) O f 

S (by) ab befian f(z), f'(z fk(z), < M(, f,e- 

f f (z) < 1f If2 (, f' y(z) f If I f1(z) I2 
f(z) I f 1-IfrMZ f(z (Yfl)(I fz8M 12-fIM 

f' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ z)ITM (0 ,f 
' 

z) 

-' (zyf1Z) I fIZI1fM'I4 f(Z) 

If(z~) -y f(z)I ? I f(z) IT [ , -, 2(z))IM ) - I]fz T 0 z) 

So(b) Ifbr(vf(t)n+ 1)f(z)ITf(O) , yf'(z)) <, Then 'z) sf,f,Yf,T e 

f(z+) < f` lf(zl[1 - f()rm(,f()] lf(z) )f I 1-(f(z) + 1)f (z)I (O If '(z))]2 T 
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Proof. (a) Since IMz I yf(z) < 1 , the Taylor series 
00 f(k+ 1) ( z)k 

f'(z+) = f'(z + Mz) = f'(z) + k! z 

k=1 
is convergent. Then 

00O f(k +1) (Z) 
Mz00 

fk+ Z 

I' (z+) - f(z)l =I , k! ( Mk<I Z|,|k!f'(z) 
z k 

k= 1 k= 1kf'z 

< If'(z)I k1 + )yf IZkMzlk = If (z)I [(1 - yf(z) IMz)2 - 

(b) Again note that (yf(z)+ i)If(z) IrM(O, f'(z)) < 1 implies that IMzIyf(z) 
< 1 by Lemma 3.2(b). It follows from part (a) and Lemma 3.2(b) that 

If'(z+)I ? If`(z+) -f'(z)I + If'(z)I < 
( - yf'(z)IM 2 ( )I ( -yf(Z) 1Mz 1)2 

< If(z)I[l - If(z)ITM(O, f'(Z))]2 
II -(yf(z) + 1)If(z)ITM(0, f'(z))]2 

Lemma 3.5. If IhIrM(O, v) < 1, then 

( v - h | TM (O, V) TM(O,V+h)? (- IhIrm(O, V))2' 

Proof. For n1 > 0, n2 > 0, n1 + n2 > 1, expanding M(n1,n2)(0O,) at v into 
Taylor series, we have 

00 Mu~(ni,n2+k) (O V) 
M(n n2)(O ,v + h) =Z k! h k , h| < TM(O v). 

k=O 

Then 

IM(n1, n2)(0, v + h)I < (n2 + k)! IM(nl ,n2+k)(O v)l IhIk 
n 1! n2! -1k= n2!k! nI!(n2+k)! 

k=O ~ ~ k= 

( TM(O, V)nl+n2 00o V|k 

n2! Z(n2+ k) (k + 1)(Ih| rM(O v)) 
k=O 

_TM(O, V)nl+n2 n2! TM(O, V)nl+n2 

n2! (1 - IhIrM(0, v))n2+l (1 - IhIrM(0, V))n2+l 

So 

Tm(O,5 v + h) sup M(n I n2)(O ,v + h) |n +n2 

n1+n2>0 nO 1-2 

rM (O,5V) - TM (O,5V) 
nli+nl2>0 (1 - IhIrm(05 v)) n +2 ( iT( 
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Lemma 3.6. If 

(Yf(Z) + 1)If(z)ITM(0, f (z)) I +KM 1 -(yf(z) + 1)If(z)ITM(0, f'(z)) <1 1 +KM 

(i.e., (yf(z) + 1)If(z) IM(0, f'(z)) < (1 - /+KM)(2 - Km)), then 

TM(O, f'(z+)) < TM (0, f'(z))[1 -(yf(z) + 1)If(z)ITM(0, f'(z))]4 
{(1 +KM) [ 1 - (yf (z) + 1) If(z) ITM (O, f (Z) )]2 -KM}2- 

Proof. Let yf(z), f(z), TM(O, f'(z)) be abbreviated as yf, f, TM, respec- 
tively. Since 

IfITM < (yf + l)fTM< 1+KM < 
2- -X- 

by Lemma 3.2(b), 

fIMzI< yfIfITM < (yf + l)IfM <1- KM 
f I fIm |TT I - (yf + ')If IrM I +KM' 

So 1/(1 - yflMzI)2 - 1 < 1/KM. If f'(z+) = f'(z) + 6(z), then by Lemma 
3.4(a), 

0(z)ITM (O, f'(z)) < If ITM 1-I <Km - =1. I(1 y'fIM I)2 j Km 

Now by Lemma 3.5, Lemma 3.4, and Lemma 3.2, 

TM(O f'(z+)) = TM(O f'(z) + 0(z)) < [ m(O, (z)) 

< TM 

{1 - If ITM[(J -yf IMzI)2 ] 

TM 

?{[(1 - If'ITM[~ 'YfIfITM/(l -IfITM))2 } 

TM(1 - (yf + 1) IfTM)4 
{(1 - (yf + 1)IflTM)2- IfITM[(l - IfITM)2 - (1 - (yf + 1)IfITM)2]1}2 

TM(l - (Yf + 1)IfITM)4 
{(1 - (yf + 1) IfITM)2 -KM[1 - (1 - (Yf + 1) IfITM)2]}2 

- TM(1 - (Yf + 1)IfITM)4 

[(1 + KM) (1 - (Yf + 1) If TM)2 - KMj2 
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Lemma 3.7 ([8, Lemma 2 of ?3]). For all z, z1, if Izi - zlyf(z) < 1 - /2, 
then 

Yf(Z1) - [2(1 - Iz, - Zlyf(Z))2 - 11(1 - IZi - ZIyf(Z)) 

Corollary. If yf(z) IMzI < 1 - v'/2, then 

Yf (Z+) < ~~Yf (z) 

Yf(Z ) -[2(1 - yf(Z)IMzI)2 -1(1 - yf(Z)IMzI) 

Proof. This follows from Lemma 3.7 with z1 = z+. 'El 

Lemma 3.8. If 

(yf(z) + 1)If(z)ITM(0, f (z)) < v/- 2 

1 -(yf(z) + 1)If(z)ITM(0, f (z)) 2 

(i.e., (yf + 1)IfIrM < (I1- v)/(2- v2)), then 

- [2(1 - (yf + 1)IflrM)2 - 1][1 -(yf + 1)IfIrM] 

- [2(1 - (yf + 1) If lrM)2 - 1][1 - (yf + 1)|fIrM] 
where yf = yf(z), f = f(z), and TM = TM(O, f'(z)) as before. 

Proof. (a) By Lemma 3.2(b), 

2'fIMzI ? lY IfT <1M (yf + )IfIrM <1 -2. 
1 - IfirM < -(Yf + ')If IrM2 

By the Corollary to Lemma 3.7, 

Yf (z+) < 
~Yf (z) 

Yf (Z) - [2(1 - 2fiMzI)2 - 
1](1 - 2fiMzI) 

Yf (Z) 

- [ ( yf Ifl )r 2 
Yf Ifl Ir [2(1 If TrM 

)2 I ( 
If-____ 

Yf(Z)(l - firM)3 

[2(1 - (yf + 1) If |rM)2 - (1 - If IrM)2][1 - (yf + 1) If IrM] 

Yf (Z) 
[2(1 - (yf + 1)If |rM)2 - 1][1 - (yf + 1)IfirM] 

(b) This follows from part (a) and the fact that 1/[(2(1 -x)2 - 1)(1 -x)] > 

1 , Vx E [OLe 1 - t/2). E 

Let 
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1x' 

02(X, KM) - (I _'X 
[(1 + KM)(1- X)2 -KM] 

1 
03(X)X=[2(1x)2 11(1 - x) 

q(X, KM) =KMq1(X)02(X, KM)q3(X) 

KM(1 -X)2 
[(1 + KM)(1- X)2 - KM]2[2(1- X)2 - 1] 

V/1 (x,Km) xox, Km)KMx(I 
- X)2 

Wp'I(X, KM) = X+(X, KM) = [(1 + KM)(1 - X)2 - KM]2[2(1 - X)2 -] 

It can be checked that +(x, KM) is increasing in x on [0, 1 - A/X) 

(note that 1 - a < 1 - v since KM?>1). So Vzz1(,KM) maps [0, 1 - 

V~~~- 
+KM- 

_M) monotonically onto [0, oc) for each KM > 1. Let tl(KM) denote 

the unique number in [0, 1 - A/X such that /1 (tl(KM), KM) = 1. 

Lemma 3.9. There holds 

O < tl(KM) < 1+Km KM>1. 
2- J? 2 1+KM 

The proof of this lemma is left to the appendix since it does not shed any 
light on later developments. 

Let Tf(z) = (yf(z) + 1)If(z)ITM(0, f (z)) 

Lemma 3.10. If zo satisfies Tf(zo) < t (Km), then there exist positive numbers 
ao, al, a2, ... satisfying aO < 1 and ak+1 < a2 for all k > 0 such that 

Tf (Zn+k) < a n-1 Tf (Zk) for all n > 0 and k > 0, where zn = If (zo), n > 0. 

Proof. By Lemma 3.9 and Lemma 3.3, we have 

(3.1) If(zi ) ?< If(zo) q 
I ( Tf(zo)) (T(zo))2. 

By Lemma 3.9 and Lemma 3.6, we have 

(3.2) rM (0, fZ (1)) <'M (0, f ZO)) 02 (Tf (ZO) , KM)- 

By Lemma 3.9 and Lemma 3.8(b), we have 

(3.3) Yf(Zl) + 1 < (Yf(Zo) + 1)q3(Tf(zo))- 

Combining (3.1), (3.2), (3.3) and using the definitions of KM and 0, we have 

(3.4) Tf (z1) < q(Tf (zo), KM)(Tf(zo))2. 

Let ao = y/1 (Tf(zo), KM); then Tf(z1) < aoTf(zo). Since Tf(zo) < t1 (KM), 
we have ao < 1. Inductively, we have 
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Tf(znf+l) < aoTf(zn), n > 0, 

Tf (Zn+1) < 0(Tf (Zn) , KM)(Tf (Zn))2, n > 0. 

Hence, it follows that 

(3.5) Tf(zn) < [Tf(zo))(Tf(zo), KM)]2 1Tf(Zo) = a 2 1Tf(zo), n > 0. 

To see this, we use induction on n and note that 0(., KM) is increasing and 
Tf(zn) < Tf(zo). So assuming (3.5) holds for n, we see from the following 
that it also holds for n + 1: 

Tf(zn+l) < /(Tf(zn) , KM)(Tf(zn ))2 

? 0( 7f (Zo), KM)[Tf (zo)0(Tf (zo), KM)]2nl?-2(Tf (zo))2 

= [Tf(zo)q$(Tf(zo)f , KM)]2 fl?1Tf(zo) = a(Zl?'1Tf(zo) 

Now for each k > 1, let ak = y/1(Tf(zk), KM); then we have ak+1 < a2 for 
all k > 0. Indeed, since Tf (Zk+l) < Tf (Zk) and 0(., KM) is increasing, 

ak+1 = y/1 (Tf(zk+l), KM) = Tf (Zk+l>)(Tf(Zk+1), KM) 

< O(Tf(Zk), KM)(Tf(Zk))2 (Tf(Zk), KM) = ( V1 (Tf(zk), Kk))2 = ak 

Since Tf (Zk) < t, (KM) for each k > 0, the argument above can be applied to 
zk in place of zo as the initial point to conclude that Tf (Zn+k) < a Tf(Zk), 
n>0. 0. 

Theorem 1. If zo satisfies Tf(zo) < t1 (KM), then zo is an approximate zero 
of f with respect to M, namely, there exist positive numbers ao, a1, a2, ... 

satisfying aO < 1 and ak+1 < ak for all k > 0 such that 

lf(zn+k)l < a 2- 
Ilf(Zk) 1 n > O, k > O. 

Proof. Let ao, a,, a2, ... be as defined in Lemma 3.10; then from Lemma 
3.10 we have ak+1 < a2 for all k > 0 and 

(3.6) Tf (Zn+k) < a 
n 

1Tf (Zk), n > 0, k > 0. 

By Lemma 3.3, we have 

(3.7) If(zn)I < If'(Zn-I)ITM(0 f'(Zn-I)) 1T (z ) lf(zn-I)I, n > 1. 

Using these facts, we prove the theorem by induction on n for each k > 0. 
When n = 0, the inequality to be proved clearly holds. Suppose we have 

If(zn+k)I < a2n -If(zk)I; then by using (3.6), (3.7), and the definition of KM, 
we see 

I f (zn+k+ 1) I < I f (zn+k) ITM (O, f' (zn+k)) 1 Tf(z+k) If (zn+k)I 

ak an -2 KMTf (Zk) < Km n- afzk I f(Z)I ? 1 - T()If(Zk)I 
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The last inequality follows from the fact that 

KMTf(Zk) _ Tf(Zk)q(Tf(Zk) , KM) = ak 1 - Tf(Zk) 

To see that, note that the function (1 - x)+(x, KM) is increasing in x on 
[0, 1 - A/KM/(I + KM)) for each KM > 1 . So (I -x)+O(x, KM) > (0, KM)= 

KM, or KM/(1 -x) < +(x, KM) on [0, 1 - AKM/(1+ JKM)). El 

For Newton's method, M(u, v) = -u/v, TM(O, v) = l/lvl, and KM = 1. 
So V, (x, 1) = x(1 - x)2/[2(1 -x)2 1i]3 and t, (1) 0.142301 . The condition 
in Theorem 1 specializes in this case to the following: 

(yf(zo) + 1) f(zo) < t* (1) = t1(1) 0.142301. (yf(z) +1)f'(zo)' 

For the iteration defined by M(u, V) = -U/V + U2/V2, we have rM(O, v) = 

V4/IvI and KM = a4. So 

VI(x, 4)= Y4X(l - X)2 

(X1 '~ [((1 + X4)(1 - )2 4)2(2(1 -X)2 - 1)] 

and tj(Y4_) 0.120574. The constant bound in the condition in this case is 
tt(Q'4) = t1I(Q4)/V4 0.091378. 

From the proof of Lemma 3.10, we see that ao = VIl(Tf(zo), KM)- So for 
Newton's method, in order to have aO < 1/2 as in Smale's definition of an ap- 
proximate zero, we need to have (yf(zo) + 1)If(zo)I/If'(zo)I < a 0.115354, 
where a satisfies VI (a , 1) = 1/2. Notice that the constant bound obtained 
from our more general result is a little smaller than that in Smale's condition 
(which has been improved upon by Rheinboldt [10] by using the Kantorovich 
theory). This is probably the price that one usually has to pay for being more 
general. When comparing these results, one should also bear in mind that the 
definitions of an approximate zero upon which the results are derived are tech- 
nically not quite the same. 

4. PROOF OF THEOREM 2 

Let rM(z) = If '(z)IrM(0, f'(z)), z+ = If(z), and 

Tf(z) = (yf(z) + 1)If(z)ITM(0, f (z)) 

as in ?3. Lemma 3.6 can be rephrased in the following form. 

Lemma 4.1. If Tf (z)/( 1 - Tf (z)) < 1 - rM(z)/(l +rM(z)), then 

f'(z~)) ? TM (O f(Z)) (I -Tf (Z))4 
TrM(0,5 J'(z+)) < 

[(1 + rM(Z))(1 - Tf (z))2 - rM(z)]2- 

Proof. The proof is virtually the same as that of Lemma 3.6 with KM being 
replaced by rM(z). El 

Combining Lemma 3.4(b) and Lemma 4.1, we have the following estimate 
on rM(z+). 
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Lemma 4.2. If Tf(z)/(l - Tf(z)) < 1 - rM(z)/(l +rM(z)), then 

rM(Z+) ? rM(z)( l - Tf(Z))2 

[(1 + rM(Z))(I - Tf(Z))2 - rM(Z)]2 

From the proof of Lemma 3.10, we have the following estimate on Tf(z+). 

Lemma 4.3. If Tf(z)/(1 - Tf(z)) < 1 - rM(z)/(l +rM(z)), then 

Tf (z+) < rM(z)(Tf(z))2(1 - Tf(z))2 

- [(1 + rM(z))(I - Tf(Z))2 - rM(z)]2[2(1 - Tf(Z))2 - 1] 

The following four technical lemmas are also needed for the proof of Theo- 
rem 2. Since their proofs are either somewhat lengthy or have little to do with 
the development of the proof of the theorem itself, they are consigned to the 
appendix. 

For r > 1 and m > 1, let u(r, m) be the positive solution of the equation 
u 

(I+r)u2-r 

then it is easy to see that 

u(r1, m) 1+1 +4mr(1+r) 
2u/)h(1+r) 

Lemma 4.4. There exists a constant c > 1 such that u(r, m) > /mr/(1 +mr) 
for all r > 1 and 1 < m < c. In fact, c = (3+ V)/2 2.618 will do. 

For r > 1 1 < m < c(c = (3 + V)/2), and 0 < a < 1, let 

g(r, m, a) = 1-a 
+ au(r, m) 

(1 + mr)(1 - a + au(r, m))2 - mr 

where u(r, m) is defined above. Notice that in the specified domain, the func- 
tion g is well defined, i.e., the denominator is nonzero (in fact, positive) by 
Lemma 4.4. 

Lemma 4.5. 
(a) g(r, m, a) is increasing in r on [1, oc) if 1 < m < c, O < a < 1I 

(b) lim g(r, m, a) = 1 if I < m < c, O < a < 1I 
r--+oo 1 + aV/hi-am 

(c) 1 < g(r, m, a) < 
I 

if I< m < c, 0 < a < 1 

Lemma 4.6. 

(a) 1+aVim-am>Oif 1 <m< 
I 

+ - + + 

2 a 4 a' 

(b) 
I < m1 if I < m < 

I 
O < a < I 

1+av/rim-am a 

Let 

m(x, r) = [(1 + r(1 -X)2 - rl2 
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Vg2(x, r) = ql'(x, r)(m(x, r))2 = [ (1 +r) (1 - X)6 
[( )I- X)2- r]6[2(1 -X)2 -I] 

Then Vg2(x, r) is increasing in x on [0, 1 - Vr/(l +r)) and maps [0, i - 

r/(1 + r)) onto [0, oc) . Let t2(r) denote the unique number in [0, 1 - 

V/r/( 1 + r)) such that Vg2(t2(r), r) = 1 
Lemma 4.7. 

(a) t2(r) < t, (r) for all r > 1I 
(b) m(t2(r), r) < c(c = (3 + V)/2) for all r > 1. 

Lemma 4.8. If Tf (zo) < t2(rM(zo)), then there exist positive numbers aO, a1, ... 

satisfying aO < 1 and ak+1 < ak for all k > 0 such that Tf(Zn+k) < ak 1Tf(Zk) 
for all n > 0 and k > 0, where Zn = T77(zo). 

Proof. Let mk = m(Tf(Zk) , rM(Zk)), ak = y/1(Tf(Zk) , rM(Zk))mk , k > 0. 
Then y1/2(Tf(Zk), rM(Zk)) = akmk. Since Tf(zo) < t2(rM(zo)), we see that 
aomo = Vg2(Tf(zo), rM(zo)) < 1. Consequently, ao < 1 since mo > 1 and 
mo < I/ao. By Lemmas 3.9, 4.7(a), 4.2, 4.3, we have 

(4.1) rM(z1) < morM(zo), 

(4.2) Tf (zl ) < yVl (Tf (zo) , rM(Zo)) Tf (Zo) 

< '1 (Tf(zo) , rM(zO))mOTf(ZO) = aoTf(zo) . 

Note that mo = m(Tf(zo) , rm(zo)) < c by Lemma 4.7(b), that mo < I/ao, 
and that Tf(zo) = 1 - u(rM(zo) , mo) . So by (4.1), (4.2) and Lemmas 4.4, 4.5, 
4.6, we have 

MI= (1 - Tf(z ))2 
[(1 + rM(z1))(l - Tf(zl))2 - rM(Z1)]2 

< ~~~(1 - aoTf (ZO))2 gmz),o a 2 

- [(1 + morM(zo))(l - aoTf(zo))2 - mOrM(Z0)]2 = (g(rM(zo) in0 aO))2 

< ~ ~ ~~~1< 

- (1 + aOv/i - aOmO)2 ? MO 

rM(Z ) Tf(Zl )m mOrM(Zo) I1 (Tf(zo), rM(zo)) Tf(zo)mO 
2(1 - Tf(zl))2 - 1 2(1 - Tf(zo))2 - 1 

=/ (T (zo) r (zo))M rM(Zo) Tf(zo)mO 
Y'1~1~Z0) rM(0))m2(l - Tf (zo))3 - 1 

= (1l(Tf(Zo) , rM(ZO))MO) = a2. 

Inductively, we have the following for all n > 0: 

rM(zn+l) < mnrM(zn), 

Tf(znf+l) < yVl(Tf(zn), rM(zn))Tf(zn) 

< ?/1 (Tf(zn), rM(zn))mn Tf(zn) = an Tf(zn) , 

mn+ < mn, an+1 < a2n. 



262 PENGYUAN CHEN 

It follows that Tf(Zn+k) < a -1 Tf (Zk) for all n > 0 and k > 0. This can be 
proved by induction on n for each k as follows. Clearly, the inequality holds 
for n = 1 . Suppose that it holds for n; then 

Tf((Zn+k+1) < an+kTf(Zn+k) < a2na2n-1Tf(zk) = a 2n+'1Tf(Zk) 

So it also holds for n + 1 . El 

Theorem 2. If Tf(zo) < t2(rM(zo)), then zo is an approximate zero of f with 
respect to M, namely, there exist positive numbers ao, a,, a2, ... satisfying 
aO < 1 and ak+1 < ak for all k > 0 such that If (Zn+k)I < ak -1 If (zk)I for all 
n > 0 and k >0, where Zn =I7 (zo)- 

Proof. Let ao, a1, a2, ... be as in Lemma 4.8; then we have Tf(Zn+l) < 
anTf(Zn) for all n > 0 and ak+1 < ak for all k > 0. By Lemma 3.3, 

(4.3) If(Zk+l)I < rM (Zk) Tf (Zk) If(Zk)I, k > 0. 1 - Tf (Zk) 

From this it follows that If(Zn+k)I < ak -If(zk)I for all n > 0 and k > 0. In 
fact, this is clearly valid for n = 0. Now suppose that it is valid for n; then, 
by (4.3), 

lf(Z+k+,l <rm(Zn+k)Tf(Znl+k) If (zn+k) I 
1 - Tf(zZn+k) 

< rM(Zn+k)Tf(Zn+k)(I -Tf(Zn+k))2mn+k If(Zn+k)I 

[(1 + rM (zn+k)) ( - Tf (zn+k ))2 -rM (zn+k )]2 [2(1 - Tf(zn+k) )2 -1] 

= VI1 (Tf (zn+k) , rM (zn+k)) mn+k If (zn+k) I 

= an+k If (Zn+k) I < ak a Ik If (Zk) I = 
akn+'1 If (zk) I 

The second inequality above makes use of the facts that mn > 1 for all n > 0 
and that 

1 
1 - Tf(zn+k) 

< (1 - Tf(Zn+k))2 

[(1 + rM(Zn+k))(l - Tf (Zn+k))2 - rM(Zn+k)] [2(1 - Tf(Zn+k))2 - 1] 

The last inequality makes use of the fact that ak+1 < ak for all k > 0. O 

5. NUMERICAL EXPERIMENTS AND DISCUSSION 

Our experimental work shows that the theoretical bounds given in the theo- 
rems are rather conservative, which echoes the findings by Curry and Van Vleck 
[2] about Smale's bound for Newton's method when applied to cubic polyno- 
mials. Nevertheless, these bounds provide a theoretical guarantee that a point 
satisfying the condition is an approximate zero of any given analytic function 
with respect to any given quadratically convergent iteration scheme M. 
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To illustrate our findings, we plot the true regions of fast convergence (i.e., 
true regions of approximate zeros) for the functions f(z) = z4 _1 and f(z) = 

ez + z - 1 with respect to the Newton iteration, the iteration defined by M(u, v) 
= -u/v + u2/v2, and the iteration defined by M(u, v) = -u/v + U2. We also 
plot the regions of approximate zeros predicted by our conditions and that of 
Smale. The plots are made in the following way. For each region to be plotted, 
the boundary point of the region along each of the 128 evenly spaced radial 
lines from the zero is determined to a certain accuracy, and these 128 boundary 
points are then connected. 

Figure 5.1 gives the true regions of approximate zeros with level ao = 0.5 
(the inner contour) and ao = 0.75 (the outer contour) corresponding to the 
four zeros 1, -1, i, -i of the function f(z) = Z4- 1 with respect to Newton 
iteration. 

Figure 5.2 gives the true region of approximate zeros with level ao = 0.5 (the 
outer contour), the region of approximate zeros predicted by Smale's condition 
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(the middle contour), and the region of approximate zeros predicted by our 
condition with a0 = 0.5 (the inner contour) for the zero z = 1 of the function 
f (z) = Z4 -1 with respect to Newton iteration. When comparing the region of 
approximate zeros predicted by our condition with that by Smale's condition, 
one must bear in mind that our definition of an approximate zero is technically 
not quite the same as that of Smale and other people. So the comparison can 
only serve as a rough indication. 

Figure 5.3 gives the true region of approximate zeros with level a0 = 0.75 
(the outer contour) and a0 = 0.5 (the middle contour), and the region predicted 
by our condition (the inner contour) for the zero z = 1 of the function f (z) = 

Z4- 1 with respect to the iteration defined by M(u, v) = -u/v + u2/v2 . 
Figure 5.4 gives the true regions of approximate zeros with level a0 = 0.5 

and a0 = 0.75 of the function f(z) = Z4 -1 around z = 1 with respect 
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to both Newton iteration (the dashed contours) and the iteration defined by 
M(u, v) = -u/v + U2/V2. 

Figure 5.5 gives the true region of approximate zeros with level ao = 0.75 
(the outer contour) and ao = 0.5 (the middle contour), and the region predicted 
by our condition (the inner contour) for the zero z = 0 of the function f(z) = 
eZ + z - 1 with respect to the iteration defined by M(u, v) = -u/v + U2/V2. 

Figure 5.6 gives the true region of approximate zeros with level ao = 0.75 
(the outer contour) and ao = 0.5 (the middle contour), and the region predicted 
by our condition (the inner contour) for the zero z = 0 of the function f(z) = 

ez + z - 1 with respect to the iteration defined by M(u, v) = -u/v + U2 . 

As evidenced from these plots, the regions of approximate zeros predicted 
by our conditions are rather conservative; in fact, they seem to be completely 
contained in the true region of approximate zeros with level ao = 0.5. So it 
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would be nice if the bounds could be improved. From Figure 5.4, it is seen 
that the regions of approximate zeros with respect to the iteration defined by 
M(u, v) = -u/v + u2/v2 are completely contained in the corresponding re- 
gions with respect to Newton iteration. Does this suggest any optimality of the 
Newton iteration compared to other quadratically convergent iterations in the 
sense of having the largest regions of approximate zeros? 

APPENDIX 

Proof of Lemma 3.9. Since i1 (x, KM) is increasing in x on [0, 1 - A/X) 
and 1 (t1 (KM), KM) = 1, it suffices to show that for all KM > 1, 

1- +Km 

K ~ ~ ~ ~~1K 

Let q = b/X; then KM = and 22 < q < I. Thus, Km ~ ~ -q2 V2/2q1 

t1_q q2 A -1q2) 2-q)( 2-q) 

2qI q2~) 2[(1 +1 2)(- ) 22[2 (1- ) 12 

_ q2(1 +q)3 1 (2-q)3 
(1 - q2)2 (1 + 2q - q2)2 [2 - (2 - q)2] 

= hi(q)h2(q)h3(q), 

where 

h (x) =x2(l + X)3 h2x)2 h3(X) (2 - x)3 
(I1-X2)2 (Ih2(x) 2(l+2 2)2 2-'-X2 

It is easy to check that hI is positive and increasing on [ 2X, 1), while h2 and 

h3 are positive and decreasing on [, 1) . So 

h (q)h2(q)h3(q) > h1(V25/2)h2(1)h3(1) = (1 + V/2)3/2 > 1. 

Proof of Lemma 4.4. The inequality to be proved is equivalent to 

(++ V + 4 r( I + r)) V~ r> 2 -r( I +r) , 

where ,u = 1 /m. By squaring both sides, we get the following equivalent in- 
equality: 
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It is easy to see that the right-hand side of the inequality is nonpositive if 

> /4r4 + 12r3 + 17r2 + 8r- (2r2 + 3r) 
2 

In this case, the inequality clearly holds. For the other case, squaring both sides 
again, we get the following equivalent inequality: 

(_j2 + 3,u - 1)r3 + (2+ 6u - 2)r2 + (1u2 + 31u - 1)r +2 > 0. 

Denote the left-hand side of the inequality by h(r, ,u); then it can be checked 
that for 1 > ,u > (3- V3)/2, we have h(l,,u) > O, ah(l, u)/Or > 0, 
02h(1, 1u)/0r2 > 0, and 03h(r, 1u)/0r3 = 6(-1u2 + 3,u - 1) > 0. It follows 
that h(r, ,u) > 0 for all r > 1 and 1 > ,u > (3 - V)/2. The lemma is proved 
by combining both cases and noting that ,u = 1/rm and that 

v'4r4 + 12r3 + 17r2 + 8r - (2r2 + 3r) 3 - V>5 
2 ~~~~> 2 r >1.fEl 

Proof of Lemma 4.5. (a) We shall show that ag(r, m, a)/Or > 0. It can be 
calculated that 

ag(r, m, a) 
ar 
_ m(l - a + au) - amru' - m(l - a + au)3 - a(l + mr)(I - a + au)2u' 

[(1 + mr)(I - a + au(r, m))2 - mr]2 

where u = u(r, m) and u' = au(r, m)/Or. So we need to show that the nu- 
merator is nonnegative. To do that, we need the following facts about u(r, mi), 
which can be easily derived from the equation defining u(r, m), namely, 
u(r, m)/[(l + r)(u(r, m))2 - r] = V/ii: 

(1) 0 < u(r, m) < 1; 
(2) au(r, m)/Or = ?HmT(l - u2)/(2V/'iH_(1 + r)u - 1); 
(3) Vf/i(l + r)u - 1 = Vir/u. 

Using these facts, we see that the numerator is 

m(l - a + au) - amru' - m(l - a + au)3 - a(l + mr)(I - a + au)2u' 

= m(l - a + au)[I - (1 - a + au)2] - au'[mr + (1 + mr)(I - a + au)2] 

_ aVfmH(l-u) Hr ) 
=2vf'iH(1 + r)u- 1H(r, m, a), 

where 
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H(r, m, a) = viH(l -a+au)(2-a+au)[2?HT(1 +r)u- 1] 

- (1 + u)[mr + (1 + mr)(I - a + au)2] 

= m(l +r)(I -a+au)2u+?/H(l -a+au)2[?/H(I +r)u- 1] 

+VFH(1 -a+au)+2V,H(1 -a+au)[ViH(l +r)u- 1] 
- (1 + u)[mr + (1 + mr)(I - a + au)2] 

= m(l + r)(I - a + au)2u + /r(-a + aU)2 + /(l - a + au) 
U 

+ 2V/iV/ir(l 
- a + au) (1+ u)[mr + (1 + mr)(I - a + aU)2] 

(1 + r)(1 - a + aU)2 + mr(I - a + aU)2 + vH(1 - + 

2mr(1 - a + au) _ mr - (1 - a + aU)2 
u 

- mr(I - a + au)2 - mru - (1 + mr)(I - a + au)2u 

= (m - a + au)2u + mr(I - a + au)2(1 - u) 
U 

+ (I - a + au)[(i,m-- 1) + a(l - u)] + mr(I - a)(I - u) 
u 

+ mr(I - a + u)(I - u) > 0 
u 

since every term is nonnegative. 
(b) It is easy to see that 

u(r, m) = 1r +' o+(1 +r) (r o). 

So the numerator 1 - a + au -) 1 (r -* oo) . For the denominator, we see that 
as r -* oc, 

(1 + mr)(I - a + au)2 - mr 

= (1 - a + au)2 + amr(u - 1)(2 - a + au) -* 1 + 2am lim r(u - 1). 
r--+oo 

To calculate limr,0o r(u - 1), we note that 

I r I1 1-4m -4mr 
r(u )=2>/i +r 

(i 
/1 +4mr(1 +r)+ 2Vh(1 +r)) 

r(u~~ - 1) I 
I 

(r -* oo). 

So limr ,o g(r, m, a) = 1/(1 + av?FiT - am). 
(c) Part (c) follows immediately from parts (a) and (b). 5 

Proof of Lemma 4.6. (a) straightforward. 
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(b) Since 1 + aVhi - am > 0 by part (a), the inequality is equivalent to 
1 < ?/h(l1+a-y'/h-am) or am/F-am-4,/iFm+1 = (/-y -1)(am-1)<O. 5 

Proof of Lemma 4.7. (a) Since m(x, r) > 1 for x > 0, we have y2(x, r) = 
yVI(x, r)(m(x, r))2 > yi1(x, r). So t2(r) < t1(r) by the definitions of t1(r) and 
t2(r) and the fact that both VI (x, r) and y2(x, r) are increasing in x on 

[0, 1 - Vr/(1l+ r)) . 
(b) Notice that m(x, r) is increasing in x on [0, 1 - r/(l1 + r)) and maps 

[0, 1 - Vr/(1 + r)) onto [1, oc). Let s(r) be the unique number in [0, 1 - 

/r/(1 + r)) such that m(s(r), r) = c. We shall show that g2(s(r), r) > 1 
for all r > 1, from which it follows that t2(r) < s(r) for all r > 1, and 
consequently, m(t2(r), r) < c for all r > 1. Since 0 < s(r) < 1, we have 
2(1 - s(r))2 - 1 < 1 for all r > 1. So, noting that s(r) = 1 - u(r, c), we have 
for all r > 1 

V2(s(r), r) = s(r)r[m(s(r)2 r)] > c3rs(r) = c3r(1 - u(r, c)) 

= C3 r 1+ 14r1r' 

(cry- 2vl/(l+r) 

C 2 (/ r 4c -1+ 4cr N 
2 1 + r 2 (1+ r)+ 1+ 4cr(1+r) 

> C2R (C lim 4c - 1 + 4cr - 
4 

kr-4o2,v5(1 +r) + 1+ 4cr-(1+Tr)) 
= C F( - 1) > 1. 

In the above, the facts that r/(l + r) > 1/2 for all r > 1 and that 

4c - 1 + 4cr 

2r(1+ r)+ V1+4cr(1+r) 
is decreasing in r on [1, oo) are used. S 
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